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Machine learning for medical imaging: methodological failures
and recommendations for the future
Gaël Varoquaux1,2,3✉ and Veronika Cheplygina 4✉

Research in computer analysis of medical images bears many promises to improve patients’ health. However, a number of
systematic challenges are slowing down the progress of the field, from limitations of the data, such as biases, to research incentives,
such as optimizing for publication. In this paper we review roadblocks to developing and assessing methods. Building our analysis
on evidence from the literature and data challenges, we show that at every step, potential biases can creep in. On a positive note,
we also discuss on-going efforts to counteract these problems. Finally we provide recommendations on how to further address
these problems in the future.
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INTRODUCTION
Machine learning, the cornerstone of today’s artificial intelligence
(AI) revolution, brings new promises to clinical practice with
medical images1–3. For example, to diagnose various conditions
from medical images, machine learning has been shown to
perform on par with medical experts4. Software applications are
starting to be certified for clinical use5,6. Machine learning may be
the key to realizing the vision of AI in medicine sketched several
decades ago7.
The stakes are high, and there is a staggering amount of

research on machine learning for medical images. But this growth
does not inherently lead to clinical progress. The higher volume of
research could be aligned with the academic incentives rather
than the needs of clinicians and patients. For example, there can
be an oversupply of papers showing state-of-the-art performance
on benchmark data, but no practical improvement for the clinical
problem. On the topic of machine learning for COVID, Robert
et al.8 reviewed 62 published studies, but found none with
potential for clinical use.
In this paper, we explore avenues to improve clinical impact of

machine learning in medical imaging. After sketching the
situation, documenting uneven progress in Section It’s not all
about larger datasets, we study a number of failures frequent in
medical imaging papers, at different steps of the “publishing
lifecycle”: what data to use (Section Data, an imperfect window on
the clinic), what methods to use and how to evaluate them
(Section Evaluations that miss the target), and how to publish the
results (Section Publishing, distorted incentives). In each section,
we first discuss the problems, supported with evidence from
previous research as well as our own analyses of recent papers. We
then discuss a number of steps to improve the situation,
sometimes borrowed from related communities. We hope that
these ideas will help shape research practices that are even more
effective at addressing real-world medical challenges.

IT’S NOT ALL ABOUT LARGER DATASETS
The availability of large labeled datasets has enabled solving
difficult machine learning problems, such as natural image

recognition in computer vision, where datasets can contain
millions of images. As a result, there is widespread hope that
similar progress will happen in medical applications, algorithm
research should eventually solve a clinical problem posed as
discrimination task. However, medical datasets are typically
smaller, on the order of hundreds or thousands:9 share a list of
sixteen “large open source medical imaging datasets”, with sizes
ranging from 267 to 65,000 subjects. Note that in medical imaging
we refer to the number of subjects, but a subject may have
multiple images, for example, taken at different points in time. For
simplicity here we assume a diagnosis task with one image/scan
per subject.
Few clinical questions come as well-posed discrimination tasks

that can be naturally framed as machine-learning tasks. But, even
for these, larger datasets have to date not lead to the progress
hoped for. One example is that of early diagnosis of Alzheimer’s
disease (AD), which is a growing health burden due to the aging
population. Early diagnosis would open the door to early-stage
interventions, most likely to be effective. Substantial efforts have
acquired large brain-imaging cohorts of aging individuals at risk of
developing AD, on which early biomarkers can be developed
using machine learning10. As a result, there have been steady
increases in the typical sample size of studies applying machine
learning to develop computer-aided diagnosis of AD, or its
predecessor, mild cognitive impairment. This growth is clearly
visible in publications, as on Fig. 1a, a meta-analysis compiling
478 studies from 6 systematic reviews4,11–15.
However, the increase in data size (with the largest datasets

containing over a thousand subjects) did not come with better
diagnostic accuracy, in particular for the most clinically relevant
question, distinguishing pathological versus stable evolution for
patients with symptoms of prodromal Alzheimer’s (Fig. 1b). Rather,
studies with larger sample sizes tend to report worse prediction
accuracy. This is worrisome, as these larger studies are closer to
real-life settings. On the other hand, research efforts across time
did lead to improvements even on large, heterogeneous cohorts
(Fig. 1c), as studies published later show improvements for large
sample sizes (statistical analysis in Supplementary Information).
Current medical-imaging datasets are much smaller than those
that brought breakthroughs in computer vision. Although a one-
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to-one comparison of sizes cannot be made, as computer vision
datasets have many classes with high variation (compared to few
classes with less variation in medical imaging), reaching better
generalization in medical imaging may require assembling
significantly larger datasets, while avoiding biases created by
opportunistic data collection, as described below.

DATA, AN IMPERFECT WINDOW ON THE CLINIC
Datasets may be biased: reflect an application only partly
Available datasets only partially reflect the clinical situation for a
particular medical condition, leading to dataset bias16. As an
example, a dataset collected as part of a population study might
have different characteristics that people who are referred to the
hospital for treatment (higher incidence of a disease). As the
researcher may be unaware of the corresponding dataset bias is
can lead to important that shortcomings of the study. Dataset bias
occurs when the data used to build the decision model (the
training data), has a different distribution than the data on which
it should be applied17 (the test data). To assess clinically-relevant
predictions, the test data must match the actual target population,
rather than be a random subset of the same data pool as the train
data, the common practice in machine-learning studies. With such
a mismatch, algorithms which score high in benchmarks can
perform poorly in real world scenarios18. In medical imaging,
dataset bias has been demonstrated in chest X-rays19–21, retinal
imaging22, brain imaging23,24, histopathology25, or dermatology26.
Such biases are revealed by training and testing a model across
datasets from different sources, and observing a performance
drop across sources.
There are many potential sources of dataset bias in medical

imaging, introduced at different phases of the modeling
process27. First, a cohort may not appropriately represent the
range of possible patients and symptoms, a bias sometimes called
spectrum bias28. A detrimental consequence is that model
performance can be overestimated for different groups, for
example between male and female individuals21,26. Yet medical
imaging publications do not always report the demographics of
the data.
Imaging devices or procedures may lead to specific measure-

ment biases. A bias particularly harmful to clinically relevant
automated diagnosis is when the data capture medical interven-
tions. For instance, on chest X-ray datasets, images for the
“pneumothorax” condition sometimes show a chest drain, which
is a treatment for this condition, and which would not yet be
present before diagnosis29. Similar spurious correlations can

appear in skin lesion images due to markings placed by
dermatologists next to the lesions30.
Labeling errors can also introduce biases. Expert human

annotators may have systematic biases in the way they assign
different labels31, and it is seldom possible to compensate with
multiple annotators. Using automatic methods to extract labels
from patient reports can also lead to systematic errors32. For
example, a report on a follow-up scan that does not mention
previously-known findings, can lead to an incorrect “negative”
labels.

Dataset availability distorts research
The availability of datasets can influence which applications are
studied more extensively. A striking example can be seen in two
applications of oncology: detecting lung nodules, and detecting
breast tumors in radiological images. Lung datasets are widely
available on Kaggle or grand-challenge.org, contrasted with (to
our knowledge) only one challenge focusing on mammograms.
We look at the popularity of these topics, here defined by the
fraction of papers focusing on lung or breast imaging, either in
literature on general medical oncology, or literature on AI. In
medical oncology this fraction is relatively constant across time for
both lung and breast imaging, but in the AI literature lung
imaging publications show a substantial increase in 2016 (Fig. 2,
methodological details in Supplementary Information). We sus-
pect that the Kaggle lung challenges published around that time

Fig. 1 Larger brain-imaging datasets are not enough for better machine-learning diagnosis of Alzheimer’s. A meta-analysis across 6
review papers, covering more than 500 individual publications. The machine-learning problem is typically formulated as distinguishing
various related clinical conditions, Alzheimer’s Disease (AD), Healthy Control (HC), and Mild Cognitive Impairment, which can signal prodromal
Alzheimer’s . Distinguishing progressive mild cognitive impairment (pMCI) from stable mild cognitive impairment (sMCI) is the most relevant
machine-learning task from the clinical standpoint. a Reported sample size as a function of the publication year of a study. b Reported
prediction accuracy as a function of the number of subjects in a study. c Same plot distinguishing studies published in different years.

Fig. 2 Differences between relative popularity of applications. We
show the percentage of papers on lung cancer (in blue) vs breast
cancer (in red), relative to all papers within two fields: medical
oncology (solid line) and AI (dotted line). Details on how the papers
are selected are given in the Supplementary Information). The
percentages are relatively constant, except lung cancer in AI, which
shows an increase after 2016.
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contributed to this disproportional increase. A similar point on
dataset trends has been made throughout the history of machine
learning in general33.

Let us build awareness of data limitations
Addressing such problems arising from the data requires critical
thinking about the choice of datasets, at the project level, i.e.
which datasets to select for a study or a challenge, and at a
broader level, i.e. which datasets we work on as a community.
At the project level, the choice of the dataset will influence the

models trained on the data, and the conclusions we can draw
from the results. An important step is using datasets from multiple
sources, or creating robust datasets from the start when feasible9.
However, existing datasets can still be critically evaluated for
dataset bias34, hidden subgroups of patients29, or mislabeled
instances35. A checklist for such evaluation on computer vision
datasets is presented in Zendel et al.18. When problems are
discovered, relabeling a subset of the data can be a worthwhile
investment36.
At the community level, we should foster understanding of the

datasets’ limitations. Good documentation of datasets should
describe their characteristics and data collection37. Distributed
models should detail their limitations and the choices made to
train them38.
Meta-analyses which look at evolution of dataset use in

different areas are another way to reflect on current research
efforts. For example, a survey of crowdsourcing in medical
imaging39 shows a different distribution of applications than
surveys focusing on machine learning1,2. Contrasting more
clinically-oriented venues to more technical venues can reveal
opportunities for machine learning research.

EVALUATIONS THAT MISS THE TARGET
Evaluation error is often larger than algorithmic
improvements
Research on methods often focuses on outperforming other
algorithms on benchmark datasets. But too strong a focus on
benchmark performance can lead to diminishing returns, where
increasingly large efforts achieve smaller and smaller performance
gains. Is this also visible in the development of machine learning
in medical imaging?
We studied performance improvements in 8 Kaggle medical-

imaging challenges, 5 on detection of diagnosis of diseases and 3
on image segmentation (details in Supplementary Information).
We use the differences in algorithms performance between the
public and private leaderboards (two test sets used in the
challenge) to quantify the evaluation noise –the spread of
performance differences between the public and private test
sets–, in Fig. 3. We compare its distribution to the winner gap—the
difference in performance between the best algorithm, and the
“top 10%” algorithm.
Overall, 6 of the 8 challenges are in the diminishing returns

category. For 5 challenges—lung cancer, schizophrenia, prostate
cancer diagnosis and intracranial hemorrhage detection—the
evaluation noise is worse than the winner gap. In other words, the
gains made by the top 10% of methods are smaller than the
expected noise when evaluating a method.
For another challenge, pneumothorax segmentation, the

performance on the private set is worse than on the public set,
revealing an overfit larger than the winner gap. Only two
challenges (covid 19 abnormality and nerve segmentation) display
a winner gap larger than the evaluation noise, meaning that the
winning method made substantial improvements compared to
the 10% competitor.

Improper evaluation procedures and leakage
Unbiased evaluation of model performance relies on training and
testing the models with independent sets of data40. However
incorrect implementations of this procedure can easily leak
information, leading to overoptimistic results. For example some
studies classifying ADHD based on brain imaging have engaged in
circular analysis41, performing feature selection on the full dataset,
before cross-validation. Another example of leakage arises when
repeated measures of an individual are split across train and test
set, the algorithm then learning to recognize the individual
patient rather than markers of a condition42.
A related issue, yet more difficult to detect, is what we call

“overfitting by observer”: even when using cross-validation,
overfitting may still occur by the researcher adjusting the method
to improve the observed cross-validation performance, which
essentially includes the test folds into the validation set of the
model. Skocik et al.43 provide an illustration of this phenomenon
by showing how by adjusting the model this way can lead to
better-than-random cross-validation performance for randomly
generated data. This can explain some of the overfitting visible in
challenges (Section Evaluation error is often larger than algo-
rithmic improvements), though with challenges a private test set
reveals the overfitting, which is often not the case for published
studies. Another recommendation for challenges would be to hold
out several datasets (rather than a part of the same dataset), as is
for example done in the Decathlon challenge44.

Metrics that do not reflect what we want
Evaluating models requires choosing a suitable metric. However,
our understanding of “suitable” may change over time. For
example, an image similarity metric which was widely used to
evaluate image registration algorithms, was later shown to be
ineffective as scrambled images could lead to high scores45.
In medical image segmentation, Maier-Hein et al.46 review 150

challenges and show that the typical metrics used to rank
algorithms are sensitive to different variants of the same metric,
casting doubt on the objectivity of any individual ranking.
Important metrics may be missing from evaluation. Next to

typical classification metrics (sensitivity, specificity, area under the
curve), several authors argue for a calibration metric that
compares the predicted and observed probabilities28,47.
Finally, the metrics used may not be synonymous with practical

improvement48,49. For example, typical metrics in computer vision
do not reflect important aspects of image recognition, such as
robustness to out-of-distribution examples49. Similarly, in medical
imaging, improvements in traditional metrics may not necessarily
translate to different clinical outcomes, e.g. robustness may be
more important than an accurate delineation in a segmentation
application.

Incorrectly chosen baselines
Developing new algorithms builds upon comparing these to
baselines. However, if these baselines are poorly chosen, the
reported improvement may be misleading.
Baselines may not properly account for recent progress, as

revealed in machine-learning applications to healthcare50, but also
other applications of machine learning51–53.
Conversely, one should not forget simple approaches effective

for the problem at hand. For example, Wen et al.14 show that
convolutional neural networks do not outperform support vector
machines for Alzheimer’s disease diagnosis from brain imaging.
Finally, minute implementation details of algorithms may be

important and many are not aware of implementation factors54.

G. Varoquaux and V. Cheplygina

3

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)    48 



Statistical significance not tested, or misunderstood
Experimental results are by nature noisy: results may depend on
which specific samples were used to train the models, the random
initializations, small differences in hyper-parameters55. However,
benchmarking predictive models currently lacks well-adopted
statistical good practices to separate out noise from generalizable
findings.

A first, well-documented, source of brittleness arises from
machine-learning experiments with too small sample sizes56.
Indeed, testing predictive modeling requires many samples, more
than conventional inferential studies, else the measured predic-
tion accuracy may be a distant estimation of real-life performance.
Sample sizes are growing, albeit slowly57. On a positive note, a
meta-analysis of public vs private leaderboards on Kaggle58

Fig. 3 Kaggle challenges: shifts from public to private set compared to improvement across the top 10% models on eight medical-
imaging challenges with significant incentives. The blue violin plot shows the evaluation noise—the distribution of differences between
public and private leaderboards. A systematic shift between public and private set (positive means that the private leaderboard is better than
the public leaderboard) indicates overfitting or dataset bias. The width of this distribution shows how noisy the evaluation is, or how
representative the public score is for the private score. The brown bar is the winner gap, the improvement between the top-most model (the
winner) and the 10% best model. It is interesting to compare this improvement to the shift and width in the difference between the public
and private sets: if the winner gap is smaller, the 10% best models reached diminishing returns and did not lead to a actual improvement on
new data.
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suggests that overfitting is less of an issue with “large enough”
test data (at least several thousands).
Another challenge is that strong validation of a method requires

it to be robust to details of the data. Hence validation should go
beyond a single dataset, and rather strive for statistical consensus
across multiple datasets59. Yet, the corresponding statistical
procedures require dozens of datasets to establish significance
and are seldom used in practice. Rather, medical imaging research
often reuses the same datasets across studies, which raises the risk
of finding an algorithm that performs well by chance, in an
implicit multiple comparison problem60.
But overall medical imaging research seldom analyzes how

likely empirical results are to be due to chance: only 6% of
segmentation challenges surveyed61, and 15% out of 410 popular
computer science papers published by ACM used a statistical
test62.
However, null-hypothesis tests are often misinterpreted63, with

two notable challenges: (1) the lack of statistically significant
results does not demonstrate the absence of effect, and (2) any
trivial effect can be significant given enough data64,65. For these
reasons, Bouthiellier et al.66 recommend to replace traditional null-
hypothesis testing with superiority testing, testing that the
improvement is above a given threshold.

Let us redefine evaluation
Higher standards for benchmarking. Good machine-learning
benchmarks are difficult. We compile below several recognized
best practices for medical machine learning evaluation28,40,67,68:

● Safeguarding from data leakage by separating out all test data
from the start, before any data transformation.

● A documented way of selecting model hyper-parameters
(including architectural parameters for neural networks, the
use of additional (unlabeled) dataset or transfer learning2),
without ever using data from the test set.

● Enough data in the test set to bring statistical power, at least
several hundreds samples, ideally thousands or more9, and
confidence intervals on the reported performance metric—
see Supplementary Information. In general, more research on
appropriate sample sizes for machine learning studies would
be helpful.

● Rich data to represent the diversity of patients and disease
heterogeneity, ideally multi-institutional data including all
relevant patient demographics and disease state, with explicit
inclusion criteria; other cohorts with different recruitment go
the extra mile to establish external validity69,70.

● Strong baselines that reflect the state of the art of machine-
learning research, but also historical solutions including
clinical methodologies not necessarily relying on medical
imaging.

● A discussion the variability of the results due to arbitrary
choices (random seeds) and data sources with an eye on
statistical significance—see Supplementary Information.

● Using different quantitative metrics to capture the different
aspects of the clinical problem and relating them to relevant
clinical performance metrics. In particular, the potential health
benefits from a detection of the outcome of interest should be
used to choose the right trade off between false detections
and misses71.

● Adding qualitative accounts and involving groups that will be
most affected by the application in the metric design72.

More than beating the benchmark. Even with proper validation
and statistical significance testing, measuring a tiny improvement
on a benchmark is seldom useful. Rather, one view is that, beyond
rejecting a null, a method should be accepted based on evidence
that it brings a sizable improvement upon the existing solutions.

This type of criteria is related to superiority tests sometimes used in
clinical trials73–75. These tests are easy to implement in predictive
modeling benchmarks, as they amount to comparing the
observed improvement to variation of the results due to arbitrary
choices such as data sampling or random seeds55.
Organizing blinded challenges, with a hidden test set, mitigate

the winner’s curse. But to bring progress, challenges should not
only focus on the winner. Instead, more can be learned by
comparing the competing methods and analyzing the determi-
nants of success, as well as failure cases.

Evidence-based medicine good practices. A machine-learning
algorithm deployed in clinical practice is a health intervention.
There is a well-established practice to evaluate the impact of
health intervention, building mostly on randomized clinical
trials76. These require actually modifying patients’ treatments
and thus should be run only after thorough evaluation on
historical data.
A solid trial evaluates a well-chosen measure of patient health

outcome, as opposed to predictive performance of an algorithm.
Many indirect mechanisms may affect this outcome, including
how the full care processes adapts to the computer-aided
decision. For instance, a positive consequence of even imperfect
predictions may be reallocating human resources to complex
cases. But a negative consequence may be over-confidence
leading to an increase in diagnostic errors. Cluster randomized
trials can account for how modifications at the level of care unit
impact the individual patient: care units, rather than individuals
are randomly allocated to receive the intervention (the machine
learning algorithm)77. Often, double blind is impossible: the care
provider is aware of which arm of the study is used, the baseline
condition or the system evaluated. Providers’ expectations can
contribute to the success of a treatment, for instance via indirect
placebo or nocebo effects78, making objective evaluation of the
health benefits challenging, if these are small.

PUBLISHING, DISTORTED INCENTIVES
No incentive for clarity
The publication process does not create incentives for clarity.
Efforts to impress may give rise to unnecessary “mathiness” of
papers or suggestive language79 (such as “human-level
performance”).
Important details may be omitted, from ablation experiments

showing what part of the method drives improvements79, to
reporting how algorithms were evaluated in a challenge [46]. This
in turn undermines reproducibility: being able to reproduce the
exact results or even draw the same conclusions80,81.

Optimizing for publication
As researchers our goal should be to solve scientific problems. Yet,
the reality of the culture we exist in can distort this objective.
Goodhart’s law summarizes well the problem: when a measure
becomes a target, it ceases to be a good measure. As our academic
incentive system is based publications, it erodes their scientific
content via Goodhart’s law.
Methods publication are selected for their novelty. Yet,

comparing 179 classifiers on 121 datasets shows no statistically
significant differences between the top methods [82]. In order to
sustain novelty, researchers may be introducing unnecessary
complexity into the methods, that do not improve their prediction
but rather contribute to technical debt, making systems harder to
maintain and deploy83.
Another metric emphasized is obtaining “state-of-the-art”

results, which leads to several of the evaluation problems outlined
in Section Evaluations that miss the target. The pressure to publish
“good” results can aggravate methodological loopholes84, for
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instance gaming the evaluation in machine learning85. It is then all
too appealing to find after-the-fact theoretical justifications of
positive yet fragile empirical findings. This phenomenon, known
as HARKing (hypothesizing after the results are known)86, has been
documented in machine learning87 and computer science in
general62.
Finally, the selection of publications creates the so-called “file

drawer problem”88: positive results, some due to experimental
flukes, are more likely to be published than corresponding
negative findings. For example, in 410 most downloaded papers
from the ACM, 97% of the papers which used significance testing
had a finding with p-value of less than 0.0562. It seems highly
unlikely that only 3% of the initial working hypotheses—even for
impactful work—turned out not confirmed.

Let us improve our publication norms
Fortunately there are various alleys to improve reporting and
transparency. For instance, the growing set of open datasets could
be leveraged for collaborative work beyond the capacities of a
single team89. The set of metrics studied could then be
broadened, shifting the publication focus away from a single-
dimension benchmark. More metrics can indeed help under-
standing a method’s strengths and weaknesses41,90,91, exploring
for instance calibration metrics28,47,92 or learning curves93. The
medical-research literature has several reporting guidelines for
prediction studies67,94,95. They underline many points raised in
previous sections: reporting on how representative the study
sample is, on the separation between train and test data, on the
motivation for the choice of outcome, evaluation metrics, and so
forth. Unfortunately, algorithmic research in medical imaging
seldom refers to these guidelines.
Methods should be studied on more than prediction perfor-

mance: reproducibility81, carbon footprint96, or a broad evaluation
of costs should be put in perspective with the real-world patient
outcomes, from a putative clinical use of the algorithms97.
Preregistration or registered reports can bring more robustness

and trust: the motivation and experimental setup of a paper are to
be reviewed before empirical results are available, and thus the
paper is be accepted before the experiments are run98. Translating
this idea to machine learning faces the challenge that new data is
seldom acquired in a machine learning study, yet it would bring
sizeable benefits62,99.
More generally, accelerating the progress in science calls for

accepting that some published findings are sometimes wrong100.
Popularizing different types of publications may help, for example
publishing negative results101, replication studies102, commen-
taries103 and reflections on the field68 or the recent NeurIPS
Retrospectives workshops. Such initiatives should ideally be led by
more established academics, and be welcoming of newcomers104.

CONCLUSIONS
Despite great promises, the extensive research in medical
applications of machine learning seldom achieves a clinical
impact. Studying the academic literature and data-science
challenges reveals troubling trends: accuracy on diagnostic tasks
progresses slower on research cohorts that are closer to real-life
settings; methods research is often guided by dataset availability
rather than clinical relevance; many developments of model bring
improvements smaller than the evaluation errors. We have
surveyed challenges of clinical machine-learning research that
can explain these difficulties. The challenges start with the choice
of datasets, plague model evaluation, and are amplified by
publication incentives. Understanding these mechanisms enables
us to suggest specific strategies to improve the various steps of
the research cycle, promoting publications best practices105. None
of these strategies are silver-bullet solutions. They rather require

changing procedures, norms, and goals. But implementing them
will help fulfilling the promises of machine-learning in healthcare:
better health outcomes for patients with less burden on the care
system.
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